МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ СЕЙСМОПЕРЕМЕЩЕНИЯ, СЕЙСМОСКОРОСТИ И СЕЙСМОУСКОРЕНИЯ В ДИАПАЗОНЕ ЧАСТОТ $0,01\,^{+}\,20$ Гц

State system for ensuring the uniformity of measurements. State verification schedule for means measuring seismic displacement, seismic velocity, seismic acceleration over the frequency range from 0,01 $^{\div}$ 20 Hz

ОКС 17.020 ОКСТУ 0008

Дата введения 1998-01-01

Предисловие

1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом метрологии им. Д.И.Менделеева (ВНИИМ им. Д.И.Менделеева)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 11-97 от 25 апреля 1997 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Белоруссия	Госстандарт Белоруссии
Грузия	Грузстандарт
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт

Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

³ Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 14 августа 1997 г. N 276 межгосударственный стандарт ГОСТ 8.562-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

4 ВВЕДЕН ВПЕРВЫЕ

Официальное издание

М.: ИПК Издательство стандартов, 1997

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на средства измерений параметров сейсмоколебаний (сейсмоперемещения, сейсмоскорости и сейсмоускорения) в диапазоне частот $0.01 \div 20~\Gamma$ ц и устанавливает порядок передачи размера единиц длины - метра (м), скорости - метра в секунду (м/с) и ускорения - метра на секунду в квадрате (м/с 2) от государственного специального эталона единиц длины, скорости и ускорения для сейсмометрии при помощи рабочих эталонов с указанием погрешностей и основных методов поверки.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использована ссылка на следующие Правила по межгосударственной стандартизации:

ПМГ 18-96 Межгосударственная поверочная схема для средств измерений времени и частоты

3 СПЕЦИАЛЬНЫЙ ЭТАЛОН

- 3.1. Государственный специальный эталон предназначен для воспроизведения параметров линейного колебательного движения твердого тела и состоит из следующих эталонных установок:
- сейсмометрическая горизонтальная установка УСГ-1, реализующая метод линейного перемещения в горизонтальной плоскости;
- сейсмометрическая горизонтальная установка УСГ-2, реализующая метод наклона средств измерений в гравитационном поле Земли и метод линейного перемещения в горизонтальной плоскости;
- сейсмометрическая вертикальная установка УСВ, реализующая метод линейного перемещения по вертикали;
- сейсмометрическая горизонтальная гравитационная установка УСГ-Г с сейсмопреобразователем, используемым в качестве компаратора, реализующая метод динамического гравитационного поля.
- 3.2 Диапазоны значений единиц длины, скорости и ускорения, воспроизводимых эталоном, составляют:

$$1 \cdot 10^{-8} \div 1 \cdot 10^{-2}$$
 м; $6 \cdot 10^{-9} \div 5 \cdot 10^{-4}$ м/с; $4 \cdot 10^{-9} \div 3 \cdot 10^{-2}$ м/с ² в диапазоне частот 0,01 ÷ 20 Гц.

3.3 Государственный специальный эталон обеспечивает воспроизведение единиц и передачу их размеров со средним квадратическим отклонением результата измерений S_0 от $1\cdot 10^{-3}\,$ до $1\cdot 10^{-2}\,$ при 21 независимом измерении и неисключенной систематической погрешностью Θ_0 от $1\cdot 10^{-2}\,$ до $1\cdot 10^{-1}\,$. Характеристики погрешностей государственного специального эталона в зависимости от значений воспроизводимой величины и частоты приведены в таблице 1.

Таблица 1 - Характеристики погрешностей государственного специального эталона

Диапазон амплитуды перемещений A , м	Частота F , Гц	\mathcal{S}_0	Θ ₀
$1 \cdot 10^{-6} \div 1 \cdot 10^{-2}$	0,01	0,01	0,1
$1 \cdot 10^{-8} \div 1,5 \cdot 10^{-3}$	0,1	0,01	0,1
$1 \cdot 10^{-6} \div 1 \cdot 10^{-3}$	1	0,003	0,03
$1 \cdot 10^{-6} \div 1 \cdot 10^{-4}$	20	0,001	0,01

3.4 Государственный специальный эталон применяют для передачи размеров единиц длины, скорости и ускорения в сейсмометрии:

рабочим эталонам методом прямых измерений или сличением при помощи компаратора; рабочим средствам измерений методом прямых измерений.

4 РАБОЧИЕ ЭТАЛОНЫ, ЗАИМСТВОВАННЫЕ ИЗ ДРУГИХ ГОСУДАРСТВЕННЫХ ПОВЕРОЧНЫХ СХЕМ

4.1 В качестве рабочих эталонов, заимствованных из других государственных поверочных схем, применяют:

интерферометр перемещений - рабочий эталон 1-го разряда по государственной поверочной схеме для средств измерений длины в соответствии с МИ 2060 [1];

генератор - рабочий эталон 1-го разряда по государственной поверочной схеме для средств измерений времени и частоты в соответствии с ПМГ 18;

вольтметр-рабочий эталон 1-го разряда по государственной поверочной схеме для средств измерений электрического напряжения до 1000 В в диапазоне частот $1 \cdot 10^{-2} \div 3 \cdot 10^{9}$ Гц в соответствии с МИ 1935 [2].

4.2 Эталоны, заимствованные из других государственных поверочных схем, применяют для:

передачи размера единицы длины рабочим эталонам - вертикальным и горизонтальным сейсмометрическим установкам методом прямых измерений;

передачи размера единицы длины рабочим средствам измерений - сейсмопреобразователям с внутренним калибратором методом косвенных измерений.

5 РАБОЧИЕ ЭТАЛОНЫ

5.1 В качестве рабочих эталонов применяют сейсмопреобразователи, вертикальные и горизонтальные сейсмометрические установки в диапазонах измерений частоты и амплитуды перемещений, указанных в таблице 2.

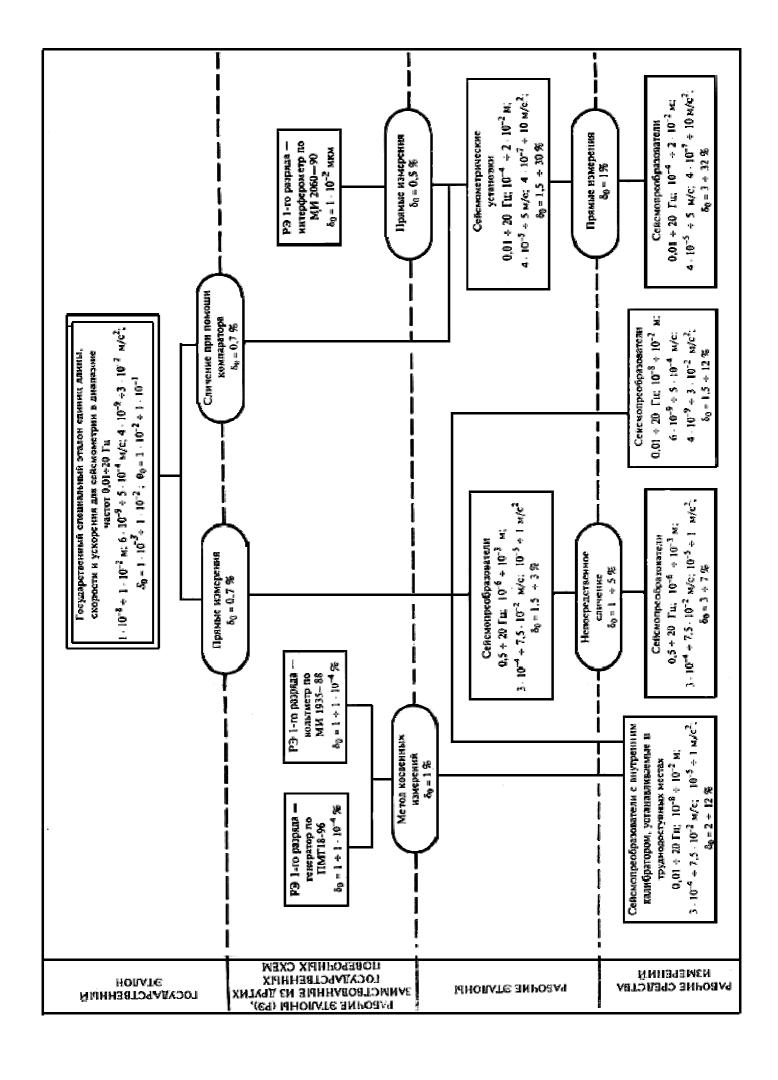
Таблица 2 - Характеристики погрешности рабочих эталонов

Наименование эталона	Диапазоны амплитуды параметров	Доверительные
	сейсмоколебаний	относительные
	(сейсмоперемещений,	погрешности δη, %
	сейсмоскорости и	
	сейсмоускорения) и частоты	
	перемещений	

Сейсмометрические установки:	$10^{-4} \div 2 \cdot 10^{-2} \text{ m}; 4 \cdot 10^{-5} \div 5 \text{ m/c};$ $4 \cdot 10^{-7} \div 10 \text{ m/c}^2$	
горизонтальные	0,01÷0,02 Гц	15÷30
	0,02÷0,04 Гц	10÷15
	0,04÷0,1 Гц	5÷10
	0,1÷20 Гц	1,5 ÷ 5
вертикальные	0,01÷20 Гц	1,5 ÷ 5
Сейсмопреобразователи	$10^{-6} \div 10^{-3} \text{ m; } 3 \cdot 10^{-4} \div $ $\div 7.5 \cdot 10^{-2} \text{ m/c; } 10^{-5} \div 1 \text{ m/c}^2$	
	0,5÷20 Гц	1,5÷3

- 5.2 Доверительные относительные погрешности δ_0 рабочих эталонов при доверительной вероятности 0,95 должны быть не более значений, указанных в таблице 2.
- 5.3 Рабочие эталоны применяют для поверки рабочих средств измерений методом прямых измерений и непосредственным сличением.

6 РАБОЧИЕ СРЕДСТВА ИЗМЕРЕНИЙ


- 6.1 В качестве рабочих средств измерений применяют сейсмопреобразователи перемещения, скорости и ускорения.
- 6.2 Доверительные относительные погрешности δ_0 рабочих средств измерений в зависимости от диапазона амплитуд и частот колебаний 1,5-32% при доверительной вероятности 0,95.
- 6.3 Периодическая поверка рабочих средств измерений с внутренним калибратором, устанавливаемых в труднодоступных местах (например, неизвлекаемых скважинных блоках), может осуществляться методом косвенных измерений с помощью рабочих эталонов, заимствованных из других поверочных схем. Первичная поверка (аттестация) этих рабочих средств измерений осуществляется на государственном специальном эталоне.

ПРИЛОЖЕНИЕ (информационное)

ВИБЛИОГРАФИЯ

- [1] МИ 2060-90 Рекомендация. ГСИ. Государственная поверочная схема для средств измерений длины в диапазоне $1\cdot 10^{-6}$ м и длин волн 0,2-50 мкм М., 1991 г.
- [2] МИ 1935-88 Рекомендация. ГСИ. Государственная поверочная схема для средств измерений электрического напряжения до 1000 В в диапазоне частот $1\cdot 10^{-2}$ - $3\cdot 10^{9}$ Гц М., 1989 г.

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ СЕЙСМОПЕРЕМЕЩЕНИЯ, СЕЙСМОСКОРОСТИ И СЕЙСМОУСКОРЕНИЯ В ДИАПАЗОНЕ ЧАСТОТ $0,01\,^{\div}\,20$ Гц

